
Tetrahedron Letters 47 (2006) 7423–7426
Synthesis of a biphenyl-based axially chiral amino acid as a
highly efficient catalyst for the direct asymmetric aldol reaction
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Abstract—A biphenyl-based axially chiral amino acid (S)-2 has been designed and synthesized. The new amino acid (S)-2 has been
found to be a more efficient catalyst than (S)-1 in the direct asymmetric aldol reaction of acetone with aldehydes. For instance, the
use of only 0.1 mol % of (S)-2 was sufficient to complete the reaction between acetone and 4-nitrobenzaldehyde, giving the corre-
sponding aldol adduct in good yield with an excellent enantioselectivity.
� 2006 Elsevier Ltd. All rights reserved.
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Figure 1. Designer axially chiral amino acids.
Organocatalytic asymmetric synthesis is regarded to
be one of the most active areas in the current organic
synthesis,1 and a number of organocatalysts such as
proline2 and proline derivatives3 including peptides4

for the direct asymmetric aldol reaction have been suc-
cessfully developed since the pioneering work of List
et al.2a However, a substoichiometric amount of catalyst
(20–30 mol %) is often required to achieve reasonable
yields, and examples of the direct asymmetric aldol reac-
tion at low catalyst loadings (e.g., <1 mol %) are rare.
Since one of the main reasons for high catalyst loadings
was known to be the degradation of proline under the
reaction conditions,5 we previously designed the binaph-
thyl-based axially chiral amino acid (S)-1, which is
structurally different from proline.6 Although the direct
asymmetric aldol reaction was efficiently catalyzed by
5 mol % of this new robust amino acid, there is still
room for further improvement in terms of catalyst load-
ing. Herein, we report the synthesis of a highly efficient
biphenyl-based axially chiral amino acid (S)-2 and its
successful application to the direct asymmetric aldol
reaction (see Fig. 1).

Although a robust binaphthyl-based amino acid (S)-1
gave a higher yield than the proline catalyst in the direct
asymmetric aldol reaction with electron deficient alde-
hydes, somewhat high catalyst loadings (5 mol %) were
still necessary to achieve high yields,6 presumably due
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to the low nucleophilicity of the benzylic amine moiety
in (S)-1. Accordingly, we designed a biphenyl-based
amino acid of type (S)-2, which is highly substituted
with electron-donating methoxy groups, with the expec-
tation of the increasing nucleophilicity of the amine
moiety.

The requisite catalyst (S)-2 was prepared from (S)-4,
4 0,5,5 0,6,6 0-hexamethoxybiphenyl-2,2 0-dicarboxylic acid
(S)-3,7 which is readily prepared from commercially
available gallic acid derivative or ellagic acid, in a
seven-step sequence (Scheme 1).8

(S)-2, the new catalyst thus obtained was applied to the
direct asymmetric aldol reaction and the results are
summarized in Table 1. As expected, the aldol reaction
between 4-nitrobenzaldehyde and acetone with
5 mol % of (S)-2 in DMF was significantly accelerated
in comparison with (S)-1 and the reaction was complete
within 4 h at room temperature (entry 1 vs 2). Only
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Scheme 1. Synthesis of biphenyl-based amino acid (S)-2. Reagents and
conditions: (a) BH3–SMe2, B(OMe)3, 0 �C to rt, 5 h; (b) Br2, pyridine,
�20 �C to 0 �C, 1 h; (c) PBr3, CH2Cl2, rt, 5 h; (d) allylamine, CH3CN,
50 �C, 12 h; (e) n-BuLi, THF, �78 �C, 1 h; (EtO)2CO, rt, 1 h; (f)
Pd(OAc)2, PPh3, N,N-dimethylbarbituric acid, CH2Cl2, 35 �C, 12 h; (g)
1 M NaOH, MeOH–THF, reflux, 10 h.

Table 1. Direct asymmetric aldol reaction of 4-nitrobenzaldehyde with
acetone catalyzed by (S)-2a

O
OHO

+
(S)-2

solvent, rt
NO2

OHC

NO2

Entry Catalyst
(mol %)

Solvent Time
(h)

Yieldb

(%)
eec (%)

1d 5 DMF 24 82 95 (R)
2 5 DMF 4 86 96 (R)
3 1 DMF 24 91 96 (R)
4 1 CH3CN 24 75 94 (R)
5 1 MeOH 24 7 34 (R)
6 1 Acetone 24 90 95 (R)
7 0.5 DMF 48 58 95 (R)
8 0.5 Acetone 44 90 96 (R)
9 0.1 Acetone 96 91 96 (R)

a The reaction of 4-nitrobenzaldehyde (0.25 mmol) with acetone
(0.5 mL) in solvent (2 mL) was carried out in the presence of (S)-2 at
room temperature.

b Isolated yield after silica gel chromatography.
c The ee was determined by HPLC on a Chiralpak AS column with

hexane/2-propanol (2:1).
d (S)-1 was used instead of (S)-2.

Table 2. Direct asymmetric aldol reaction of various aldehydes with
acetone catalyzed by (S)-2a

O

R

OHO
+

0.5 mol % (S)-2

rt, 48-72 h
RCHO

*

Entry Aldehyde Yieldb (%) eec (%)

1
CHO

R1

R1 = NO2 90 96 (R)
2 R1 = CN 90 94 (R)
3 R1 = H 19 95 (R)
4d R1 = H 50 95 (R)

5

CHO

Cl

82 96 (R)

6d
CHO

50 94 (R)

7
N

CHO
95 95

8
CHO

EtO2C 68 96

9
CHO

Br Br
58 91

a The reaction of an aldehyde (0.25 mmol) with acetone (0.5 mL) in
solvent (2 mL) was carried out in the presence of (S)-2 at room
temperature.

b Isolated yield after silica gel chromatography.
c The ee was determined by HPLC using a chiral column (Chiralpak

AS, AD-H, Chiralcel OD-H, Daicel Chemical Industries).
d Use of 2 mol % of (S)-2.
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1 mol % of (S)-2 in DMF was sufficient to obtain the de-
sired aldol adduct in 91% yield with 96% ee (entry 3).
Encouraged by this result, we next examined the solvent
effect with the expectation of further reduction of cata-
lyst loading. Among several solvents examined, acetone,
which could not be used as a solvent for (S)-1 due to its
poor solubility, was also found to be a suitable solvent
(entry 6). While DMF was less efficient with the lower
catalyst loading (0.5 mol %) of (S)-2 (entry 7), the reac-
tion in acetone proceeded smoothly with excellent
enantioselectivity (entry 8). Upon further investigation
of the catalyst loading, it was found that even
0.1 mol % of (S)-2 was sufficient to achieve a high yield
and an excellent enantioselectivity (entry 9).

To prove the efficiency of this new catalyst, the aldol
reaction of acetone with several other aldehydes was
carried out in the presence of 0.5 mol % of (S)-2 (Table
2).9 Olefinic, heteroaromatic, and aromatic aldehydes
with electron withdrawing groups were found to be suit-
able substrates (entries 1, 2, 5, 7, and 8). With 2 mol %
of (S)-2, even simple aromatic aldehydes such as benz-
aldehyde and b-naphthylaldehyde gave the correspond-
ing aldol adducts in moderate yields (entries 4 and 6).
Furthermore, the reaction of a,a-dibromoheptanal as
an aliphatic aldehyde substitute was also found to
proceed with a high enantioselectivity (entry 9).10

To demonstrate the efficiency of biphenyl-based amino
acid (S)-2 in the direct asymmetric aldol reaction, a
kinetic study using catalysts (S)-1 and (S)-2 was carried
out (Fig. 2). With respect to the reaction rate, the
biphenyl-based amino acid (S)-2 was more effective
than the binaphthyl-based amino acid (S)-1, probably
due to the higher nucleophilicity of (S)-2. Furthermore,
the reaction catalyzed by only 0.1 mol % of (S)-2 in
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Figure 2. Direct asymmetric aldol reaction of acetone with 4-
nitrobenzaldehyde using (a) 5 mol % (S)-2 in DMF (0.125 M), (b)
5 mol % (S)-1 in DMF (0.125 M), (c) 0.1 mol % (S)-2 in acetone
(0.10 M), and (d) 0.1 mol % (S)-1 in acetone (0.10 M) at room
temperature.
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acetone proceeded gradually to completion, indicating
the robust nature of (S)-2 under the reaction
conditions.

In conclusion, we synthesized a novel biphenyl-based
axially chiral amino acid (S)-2 and demonstrated its
effectiveness for the direct asymmetric aldol reaction.
It is worth noting that the catalyst loading could be
decreased to only 0.1 mol % in acetone without loss of
yield or enantioselectivity. Further investigations to
expand the scope of substrates are currently underway.
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